skip to content


Cavendish Laboratory, Cambridge


PhD in Physics, University of Cambridge, UK (2019)
M.Phil. in Physics, University of Cambridge, UK (2014)
Bachelor Thesis, ESPCI ParisTech, France (2013)
B.Sc. in Physics, Universität Konstanz, Germany (2010-2013)


Spin is a fundamental quantum-mechanical property of electrons which gives rise to their magnetic moment and which is being exploited directly in the fields of spintronics and quantum information processing. It is of particularly importance also in the field of organic semiconductors where it governs, for example, the fundamental physics of charge generation in photovoltaics (and recombination in LEDs). The importance of spin in these materials originates from the weakness of mechanisms for spin relaxation; an initial orientation of an electron’s magnetic moments is preserved over hundreds of nanoseconds compared to picoseconds or shorter in inorganic materials. The resulting long spin diffusion lengths of on the order of 100 nm and the successful conversion of spin-currents to charge-currents may even lead the way towards the application of polymeric and molecular semiconductors in spintronics device.

The relationship between molecular geometries, the morphology of organic thin films, and the resulting charge transport properties have been intensely studied for optoelectronic applications. Given the importance of spin in organic materials, my work focuses on establishing similar relationships for spin dynamics.


Key publications: 

S. Schott, U. Chopra, V. Lemaur, A. Melnyk, Y. Olivier, R. Di Pietro, I. Romanov, R. L. Carey, X. Jiao, C. Jellett, M. Little, A. Marks, C. R. Mc- Neill, I. McCulloch, E. R. McNellis, D. Andrienko, D. Beljonne, J. Sinova, and H. Sirringhaus, “Polaron spin dynamics in high-mobility polymeric semiconductors”, Nature Physics 15, 814–822 (2019).

K. Kang, S. Schott, D. Venkateshvaran, K. Broch, G. Schweicher, D. Harkin, C. Jellett, C. Nielsen, I. McCulloch, and H. Sirringhaus, “Inves- tigation of the thermoelectric response in conducting polymers doped by solid-state diffusion”, Materials Today Physics 8, 112–122 (2019).

E. R. McNellis, S. Schott, H. Sirringhaus, and J. Sinova, “Molecular tuning of the magnetic response in organic semiconductors”, Phys. Rev. Mater. 2, 074405 (2018).

M. Statz, D. Venkateshvaran, X. Jiao, S. Schott, C. R. McNeill, D. Emin, H. Sirringhaus, and R. Di Pietro, “On the manifestation of electron-electron interactions in the thermoelectric response of semicrystalline conjugated polymers with low energetic disorder”, Commun. Phys. 1, 1319 (2018).

M. J. Cliffe, J. Lee, J. A. M. Paddison, S. Schott, P. Mukherjee, M. W. Gaultois, P. Manuel, H. Sirringhaus, S. E. Dutton, and C. P. Grey, “Low-dimensional quantum magnetism in Cu(NCS)2: A molecular framework material”, Phys. Rev. B 97, 1–10 (2018).

S. Schott, E. R. McNellis, C. B. Nielsen, H.-Y. Chen, S. Watanabe, H. Tanaka, I. McCulloch, K. Takimiya, J. Sinova, and H. Sirringhaus, “Tuning the effective spin-orbit coupling in molecular semiconductors.”, Nat. Commun. 8, 15200 (2017).

S. Schott, E. Gann, L. Thomsen, S.-H. Jung, J.-K. Lee, C. R. Mc- Neill, and H. Sirringhaus, “Charge-transport anisotropy in a uniaxially aligned diketopyrrolopyrrole-based copolymer”, Adv. Mater. 27, 7356– 7364 (2015).

M. Gruber, S.-H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J.-K. Lee, and H. Sirringhaus, “Enabling high-mobility, ambipolar chargetransport in a DPP-benzotriazole copolymer by side-chain engineering”, Chem. Sci. 6, 6949–6960 (2015).

S. Schott, J. Bertolotti, J.-F. L ́eger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues.”, Opt. Express 23, 13505–13516 (2015).

Winton Scholar
Optoelectronics Group
Dr Sam  Schott

Contact Details

Email address: 
+44 (0)1223 765262